Goto

Collaborating Authors

 Communications


BIGOS V2 Benchmark for Polish ASR: Curated Datasets and Tools for Reproducible Evaluation

Neural Information Processing Systems

Speech datasets available in the public domain are often underutilized because of challenges in accessibility and interoperability. To address this, a system to survey, catalog, and curate existing speech datasets was developed, enabling reproducible evaluation of automatic speech recognition (ASR) systems. The system was applied to curate over 24 datasets and evaluate 25 ASR models, with a specific focus on Polish. This research represents the most extensive comparison to date of commercial and free ASR systems for the Polish language, drawing insights from 600 system-model-test set evaluations across 8 analysis scenarios. Curated datasets and benchmark results are available publicly.



Enhancing Graph Transformers with Hierarchical Distance Structural Encoding 2

Neural Information Processing Systems

Graph transformers need strong inductive biases to derive meaningful attention scores. Yet, current methods often fall short in capturing longer ranges, hierarchical structures, or community structures, which are common in various graphs such as molecules, social networks, and citation networks. This paper presents a Hierarchical Distance Structural Encoding (HDSE) method to model node distances in a graph, focusing on its multi-level, hierarchical nature. We introduce a novel framework to seamlessly integrate HDSE into the attention mechanism of existing graph transformers, allowing for simultaneous application with other positional encodings. To apply graph transformers with HDSE to large-scale graphs, we further propose a high-level HDSE that effectively biases the linear transformers towards graph hierarchies. We theoretically prove the superiority of HDSE in terms of expressivity and generalization. Empirically, we demonstrate that graph transformers with HDSE excel in graph classification, regression on 7 graph-level datasets, and node classification on 11 large-scale graphs.


OpenFilter: A Framework to Democratize Research Access to Social Media AR Filters

Neural Information Processing Systems

Augmented Reality or AR filters on selfies have become very popular on social media platforms for a variety of applications, including marketing, entertainment and aesthetics. Given the wide adoption of AR face filters and the importance of faces in our social structures and relations, there is increased interest by the scientific community to analyze the impact of such filters from a psychological, artistic and sociological perspective. However, there are few quantitative analyses in this area mainly due to a lack of publicly available datasets of facial images with applied AR filters. The proprietary, close nature of most social media platforms does not allow users, scientists and practitioners to access the code and the details of the available AR face filters. Scraping faces from these platforms to collect data is ethically unacceptable and should, therefore, be avoided in research.


Anonymous Bandits for Multi-User Systems

Neural Information Processing Systems

In this work, we present and study a new framework for online learning in systems with multiple users that provide user anonymity. Specifically, we extend the notion of bandits to obey the standard k-anonymity constraint by requiring each observation to be an aggregation of rewards for at least k users. This provides a simple yet effective framework where one can learn a clustering of users in an online fashion without observing any user's individual decision. We initiate the study of anonymous bandits and provide the first sublinear regret algorithms and lower bounds for this setting.


Clustering with Non-adaptive Subset Queries

Neural Information Processing Systems

Recovering the underlying clustering of a set U of n points by asking pair-wise same-cluster queries has garnered significant interest in the last decade. Given a query S U, |S| = 2, the oracle returns yes if the points are in the same cluster and no otherwise. We study a natural generalization of this problem to subset queries for |S| > 2, where the oracle returns the number of clusters intersecting S. Our aim is to determine the minimum number of queries needed for exactly recovering an arbitrary k-clustering. We focus on non-adaptive schemes, where all the queries are asked in one round, thus allowing for the querying process to be parallelized, which is a highly desirable property. For adaptive algorithms with pair-wise queries, the complexity is known to be ฮ˜(nk), where k is the number of clusters.



Piecewise-Stationary Bandits with Knapsacks

Neural Information Processing Systems

We propose a novel inventory reserving algorithm which draws new insights into Bandits with Knapsacks (Bwk) problems in piecewise-stationary environments.


Adaptive Shrinkage Estimation for Streaming Graphs

Neural Information Processing Systems

Networks are a natural representation of complex systems across the sciences, and higher-order dependencies are central to the understanding and modeling of these systems. However, in many practical applications such as online social networks, networks are massive, dynamic, and naturally streaming, where pairwise interactions among vertices become available one at a time in some arbitrary order. The massive size and streaming nature of these networks allow only partial observation, since it is infeasible to analyze the entire network. Under such scenarios, it is challenging to study the higher-order structural and connectivity patterns of streaming networks. In this work, we consider the fundamental problem of estimating the higher-order dependencies using adaptive sampling.


Homomorphic Matrix Completion

Neural Information Processing Systems

In recommendation systems, global positioning, system identification, and mobile social networks, it is a fundamental routine that a server completes a low-rank matrix from an observed subset of its entries. However, sending data to a cloud server raises up the data privacy concern due to eavesdropping attacks and the singlepoint failure problem, e.g., the Netflix prize contest was canceled after a privacy lawsuit. In this paper, we propose a homomorphic matrix completion algorithm for privacy-preserving purpose. First, we formulate a homomorphic matrix completion problem where a server performs matrix completion on cyphertexts, and propose an encryption scheme that is fast and easy to implement. Secondly, we prove that the proposed scheme satisfies the homomorphism property that decrypting the recovered matrix on cyphertexts will obtain the target matrix (on plaintexts). Thirdly, we prove that the proposed scheme satisfies an (,)-differential privacy property.